

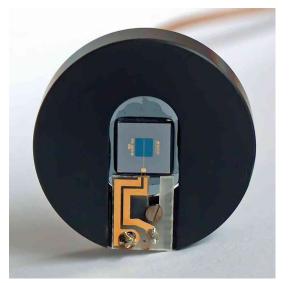
Mounted PCA on hyperhemispherical silicon substrate lens data sheet PCA-I-g-w- λ -h

Photoconductive antenna	substrate	semi-ir	insulating GaAs	
	thickness t	625 µn	n	
Hyperhemispherical lens	material		undoped HRFZ-silicon,	
	specific resistance ρ		>10 kΩcm	
	refractive index n		3.41	
	diameter		12 mm	
	height h		7.1 mm	
	distance d		7.7 mm	
Terahertz beam	tz beam collection angle α	θα	73°	
	divergence ang	gle ß	17°	
	virtual focus ler	ngth L	26.4 mm	

data sheet

1/2

Aluminum mount25.4 mm diameter, 9.5 mm thickCoaxial cabletype RG178 B/U, impedance 50Ω, capacitance 96pF/m, 1 m longConnector typeBNC or SMA


data sheet

- The PCA chip is optically adjusted and glued on the hyperhemispherical silicon lens with a thermal conducting glue.
- The silicon lens is fixed on the aluminum mount with a thermal conducting glue.
- The two antenna contacts are wire bonded on a printed circuit board, which provides the connection to a 1m long coaxial cable with BNC or SMA connector
- A central hole in the aluminum mount allows the Terahertz radiation to escape from the hyperhemispherical silicon lens

PCA with hyperhemispherical silicon lens, coaxial cable RG 178 and BNC connector

Front view on mounted PCA (laser side)

Back view on mounted PCA (THz side)

